Abstract
This paper proposes an estimation approach for tool wear and surface roughness using deep learning and sensor fusion. The one-dimensional convolutional neural network (1D-CNN) is utilized as the estimation model with X- and Y-coordinate vibration signals and sound signal fusion using sensor influence analysis. First, machining experiments with computer numerical control (CNC) parameters are designed using a uniform experimental design (UED) method to guarantee the variety of collected data. The vibration, sound, and spindle current signals are collected and labeled according to the machining parameters. To speed up the degree of tool wear, an accelerated experiment is designed, and the corresponding tool wear and surface roughness are measured. An influential sensor selection analysis is proposed to preserve the estimation accuracy and to minimize the number of sensors. After sensor selection analysis, the sensor signals with better estimation capability are selected and combined using the sensor fusion method. The proposed estimation system combined with sensor selection analysis performs well in terms of accuracy and computational effort. Finally, the proposed approach is applied for on-line monitoring of tool wear with an alarm, which demonstrates the effectiveness of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.