Abstract

The present work focusses on measuring the permeability across gas diffusion layers (GDLs) first in a dedicated cell and later in PEM fuel cell configuration with varying bi-polar plate designs. Eight carbon paper-based GDLs with and without the microporous layer (MPL), have been tested. An in-house designed dedicated cell allowed measuring pressure drop depending on flow rate, for i) through-plane and ii) in-plane direction. Further, transport measurements were conducted in 25 cm2 bi-polar plates (BPs) in fuel cell configuration having single or multiple serpentine channels, by stacking the GDL inside. The results show that gas permeability in the dedicated cell for through-plane and in-plane can be estimated by using Darcy's law. However, for BPs, the flow is affected additionally by inertial contribution (Darcy-Forchheimer). Finally, the efficiency allowed by selected GDLs installed in a fuel cell under operation shows a relationship between the equivalent permeability and the fuel cell performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.