Abstract
The present article obtains the point estimators of the exponentiated-Weibull parameters when all the three parameters of the distribution are unknown. Maximum likelihood estimator generalized maximum likelihood estimator and Bayes estimators are proposed for three-parameter exponentiated-Weibull distribution when available sample is type-II censored. Independent non-informative types of priors are considered for the unknown parameters to develop generalized maximum likelihood estimator and Bayes estimators. Although the proposed estimators cannot be expressed in nice closed forms, these can be easily obtained through the use of appropriate numerical techniques. The performances of these estimators are studied on the basis of their risks, computed separately under LINEX loss and squared error loss functions through Monte-Carlo simulation technique. An example is also considered to illustrate the estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.