Abstract

Advances in medical imaging have enabled patient-specific biomechanical modelling of arterial lesions such as atherosclerosis and aneurysm. Geometry acquired from in-vivo imaging is already pressurized and a zero-pressure computational start shape needs to be identified. The backward displacement algorithm was proposed to solve this inverse problem, utilizing fixed-point iterations to gradually approach the start shape. However, classical fixed-point implementations were reported with suboptimal convergence properties under large deformations. In this paper, a dynamic learning rate guided by the deformation gradient tensor was introduced to control the geometry update. The effectiveness of this new algorithm was demonstrated for both idealized and patient-specific models. The proposed algorithm led to faster convergence by accelerating the initial steps and helped to avoid the non-convergence in large-deformation problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.