Abstract
The introduction of nanoparticles into the fluids traditionally used in heat transfer processes, such as water, ethylene glycol and propylene glycol, has led to the advent of nanofluids which have become widely applicable due to their improved heat transfer properties. Dispersion of nanoparticles in base fluid affects the viscosity of system to a noticeable degree. In this regard, we developed a hybrid self-organizing polynomial neural network on the basis of group method of data handling (GMDH) to study the viscosity of nine nanofluids based on water, ethylene glycol and propylene glycol. The results show that the hybrid GMDH model can accurately predict the viscosity of nanofluids. The percentage of average absolute relative deviation (AARD%) for all systems was 2.14% with a high regression coefficient of R=0.9978. The results estimated by the hybrid GMDH model, when compared to those of various theoretical models and an empirical equation, exhibit a higher accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.