Abstract

Objective. Studies on the non-invasive brain–machine interface that controls prosthetic devices via movement intentions are at their very early stages. Here, we aimed to estimate three-dimensional arm movements using magnetoencephalography (MEG) signals with high accuracy. Approach. Whole-head MEG signals were acquired during three-dimensional reaching movements (center-out paradigm). For movement decoding, we selected 68 MEG channels in motor-related areas, which were band-pass filtered using four subfrequency bands (0.5–8, 9–22, 25–40 and 57–97 Hz). After the filtering, the signals were resampled, and 11 data points preceding the current data point were used as features for estimating velocity. Multiple linear regressions were used to estimate movement velocities. Movement trajectories were calculated by integrating estimated velocities. We evaluated our results by calculating correlation coefficients (r) between real and estimated velocities. Main results. Movement velocities could be estimated from the low-frequency MEG signals (0.5–8 Hz) with significant and considerably high accuracy (p <0.001, mean r > 0.7). We also showed that preceding (60–140 ms) MEG signals are important to estimate current movement velocities and the intervals of brain signals of 200–300 ms are sufficient for movement estimation. Significance. These results imply that disabled people will be able to control prosthetic devices without surgery in the near future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.