Abstract
The presence of measurement errors is a ubiquitously faced problem and plenty of work has been done to overcome this when a single covariate is mismeasured under a variety of conditions. However, in practice, it is possible that more than one covariate is measured with error. When measurements are taken by the same device, the errors of these measurements are likely correlated. In this paper, we present a novel approach to estimate the covariance matrix of classical additive errors in the absence of validation data or auxiliary variables when two covariates are subject to measurement error. Our method assumes these errors to be following a bivariate normal distribution. We show that the variance matrix is identifiable under certain conditions on the support of the error-free variables and propose an estimation method based on an expansion of Bernstein polynomials. To investigate the performance of the proposed estimation method, the asymptotic properties of the estimator are examined and a diverse set of simulation studies is conducted. The estimated matrix is then used by the simulation-extrapolation (SIMEX) algorithm to reduce the bias caused by measurement error in logistic regression models. Finally, the method is demonstrated using data from the Framingham Heart Study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.