Abstract

The variance effective population size for age structured populations is generally hard to estimate and the temporal method often gives biased estimates. Here, we give an explicit expression for a correction factor which, combined with estimates from the temporal method, yield approximately unbiased estimates. The calculation of the correction factor requires knowledge of the age specific offspring distribution and survival probabilities as well as possible correlation between survival and reproductive success. In order to relax these requirements, we show that only first order moments of these distributions need to be known if the time between samples is large, or individuals from all age classes which reproduce are sampled. A very explicit approximate expression for the asymptotic coefficient of standard deviation of the estimator is derived, and it can be used to construct confidence intervals and optimal ways of weighting information from different markers. The asymptotic coefficient of standard deviation can also be used to design studies and we show that in order to maximize the precision for a given sample size, individuals from older age classes should be sampled since their expected variance of allele frequency change is higher and easier to estimate. However, for populations with fluctuating age class sizes, the accuracy of the method is reduced when samples are taken from older age classes with high demographic variation. We also present a method for simultaneous estimation of the variance effective and census population size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call