Abstract

The accuracy of the method of azimuth structure function for estimation of the dissipation rate of the kinetic energy of turbulence from an array of radial velocities measured by low-energy micropulse coherent Doppler lidars with conical scanning by a probing beam around the vertical axis has been studied numerically. The applicability of the method in dependence on the turbulence intensity and the signal-to-noise ratio has been determined. The method of azimuth structure function was applied for estimation of the turbulent energy dissipation rate from radial velocities measured by the lidar in the experiments on the coast of Lake Baikal. Two dimensional time-height patterns of the wind turbulence energy dissipation rate were obtained. Part of them were obtained in presence of the atmospheric internal waves (AIWs) and low-level jet streams. It is observed that the wind turbulence in the area occupied by jet streams is very weak. In the process of dissipation of AIWs the wind turbulence strength increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call