Abstract

A model is presented which enables gas exchange data to be used to partition the intracellular resistance to leaf photosynthesis into carboxylation and transport components. A basic assumption is that the over-all kinetics of the carboxylation reaction fit the Michaelis-Menten equation.The model was tested for cotton (Gossypium hirsutum L., var. Deltapine Smoothleaf), where photorespiration was suppressed by using gas mixtures containing less than 1.5% oxygen. It was concluded that the transport resistance formed the major component of the intracellular resistance for the plants studied. However, in some cases the major intracellular factor limiting photosynthesis, at an ambient CO(2) concentration of 600 ng cm(-3), was the carboxylation system, which was close to saturation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.