Abstract
Nous présentons deux procédures pour estimer la densité de transition d’une chaîne de Markov homogène. Dans la première procédure, nous construisons un estimateur constant par morceaux sur une partition aléatoire bien choisie. Nous établissons des bornes de risque non-asymptotiques pour une perte de type Hellinger lorsque la racine carrée de la densité de transition appartient à un espace de Besov inhomogène dont l’indice de régularité peut être petit. Nous illustrons ces résultats par des simulations numériques. La deuxième procédure est d’intérêt théorique. Elle permet d’obtenir un théorème de sélection de modèle à partir duquel nous déduisons des vitesses de convergence sur des espaces de Besov inhomogènes anisotropes. Nous étudions finalement les vitesses qui peuvent être atteintes sous des hypothèses structurelles sur la densité de transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.