Abstract

Precise fertilizer application in agriculture requires accurate and dependable measurements of the soil total nitrogen (TN) concentration. Henan Province is one of the most important grain-producing areas in China. In order to promote the development of precision agriculture in Henan Province, this study took the high-standard basic farmland construction area in central Henan Province as the research area. Using single-phase images acquired from the ZY1-02D satellite hyperspectral sensor on 28 January 2021 (with a spatial resolution of 30 m × 30 m, a spectral range that covered 400–2500 nm, and a revisit period of 3 days) for spectral reflectance transformation and feature spectral band extraction. Based on multiple representation models, such as multiple linear regression, partial least squares regression, and support vector machine (SVM), all bands, feature bands, feature band combinations, and differential evolution (DE) algorithms were used to extract the secondary characteristic variables of the combination of characteristic bands, which were used as model inputs to estimate the content of TN in the study area. It was found that (1) the spectral reflectance transformation could help to improve the accuracy of prediction by reducing the interference from noise in the model, but the optimal spectral transformation method differed between different models and even between the training and test sets of the same model; (2) the estimation accuracy of the TN content model based on the minimum shrinkage and feature selection operator of the feature band was usually better than that of the full band, the feature combination band contained more effective information related to the TN content, and the combination of the DE algorithm and the SVM model achieved a better estimation accuracy for secondary feature extraction and TN content estimation of the feature combination band; and (3) ZY1-02D hyperspectral satellite data have the potential for the dynamic and non-destructive monitoring of regional TN content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call