Abstract

In this paper, the conjugate gradient method coupled with adjoint problem is used in order to solve the inverse heat conduction problem and estimation of the time-dependent heat flux using the temperature distribution at a point. Also, the effects of noisy data and position of measured temperature on final solution are studied. The numerical solution of the governing equations is obtained by employing a finite-difference technique. For solving this problem the general coordinate method is used. We solve the inverse heat conduction problem of estimating the transient heat flux, applied on part of the boundary of an irregular region. The irregular region in the physical domain ( r,z) is transformed into a rectangle in the computational domain ( ξ,η). The present formulation is general and can be applied to the solution of boundary inverse heat conduction problems over any region that can be mapped into a rectangle. The obtained results for few selected examples show the good accuracy of the presented method. Also the solutions have good stability even if the input data includes noise and that the results are nearly independent of sensor position.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.