Abstract

Tropical countries are now facing increasing global pressure to conserve tropical forests, while having to maintain cultivated lands (particularly shifting cultivation) for the subsistence of local people. To accomplish the effective conservation of tropical forests in harmony with subsistence shifting cultivation, we evaluated the influence of shifting cultivation on ecosystem services (i.e., biodiversity and carbon stock) at a landscape level based on three land-use scenarios. The study focus was the upland area between the Kinabalu Park and the Crocker Range Park in Sabah, northern Borneo, where local people conduct shifting cultivation for their subsistence. In this area, vegetation patches of various stages of secondary succession admix with shifting-cultivation lands. An earlier study in the same site depicted significant relationships between the stand ages of vegetation patches (which form a sere of secondary succession after the abandonment of cultivated land) and the above-ground biomass (i.e., carbon stock) and species composition of the stands. We incorporated these significant relationships to a stand-age estimation algorithm that had been developed earlier. We first mapped current (as of 2010) spatial patterns of the above-ground biomass and plant-community composition for the whole landscape. Subsequently, we simulated the spatiotemporal patterns of the above-ground biomass and plant-community distribution using three land-use scenarios: (1) reducing the area of shifting cultivation by one half and protecting the rest of the area; (2) shortening the minimum fallow period from 7 to 4 years while maintaining the same area of cultivation; and (3) elongating the minimum fallow period from 7 to 10 years while maintaining the same area of cultivation. Results indicated that land use based on scenario 2 could increase the carbon stock while maintaining the cultivation area. Our methods were effective in mapping the structure and composition of highly dynamic forests at a landscape level, and at predicting the future patterns of important ecosystem services based on land-use scenarios.

Highlights

  • Shifting cultivation is a widespread form of land use in tropical regions, and has formed the basis of livelihoods and customs for centuries [1,2,3,4]

  • Land patterns that consist of successional vegetation and old-growth matrixes are regarded as an important provider of ecosystem services in contemporary landscapes dominated by humans [15,16]

  • Each pixel in the map contains an above-ground biomass (AGB) value, and the color gradation from red to green indicates a gradient of AGB values from low to high

Read more

Summary

Introduction

Shifting cultivation is a widespread form of land use in tropical regions, and has formed the basis of livelihoods and customs for centuries [1,2,3,4]. This traditional land use still remains central to the. Where there is a long history of shifting cultivation, patches of successional vegetation intermix with old-growth forests and form spatiotemporally heterogeneous landscape patterns [12]. Such spatiotemporally dynamic and heterogeneous landscapes occur widely across many tropical countries [13,14]. Land patterns that consist of successional vegetation and old-growth matrixes (hereafter referred to as land mosaics) are regarded as an important provider of ecosystem services in contemporary landscapes dominated by humans [15,16]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call