Abstract
The measurement of the process capability is a key part of quantitative quality control, and process capability indices are statistical measures of the process capability. Six Sigma level represents the maximum achievable process capability, and many enterprises have implemented Six Sigma improvement strategies. In recent years, many studies have investigated Six Sigma quality indices, including Qpk. However, Qpk contains two unknown parameters, namely δ and γ, which are difficult to use in process control. Therefore, whether a process quality reaches the k sigma level must be statistically inferred. Moreover, the statistical method of sampling distribution is challenging for the upper confidence limits of Qpk. We address these two difficulties in the present study and propose a methodology to solve them. Boole’s inequality, Demorgan’s theorem, and linear programming were integrated to derive the confidence intervals of Qpk, and then the upper confidence limits were used to perform hypothesis testing. This study involved a case study of the semiconductor assembly process in order to verify the feasibility of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.