Abstract
This paper proposes a method for the estimation of the seismic energy demands of two-way asymmetric-plan buildings under bi-directional ground excitations. The modal absorbed energies of asymmetric-plan buildings are estimated by using the three-degree-of-freedom (3DOF) modal systems. The 3DOF modal system represents the two roof translations versus the two base shears and the roof rotation versus the base torque relationships of each vibration mode of two-way asymmetric-plan buildings. Not only the total absorbed energy but also the portions of the total absorbed energy contributed from translational and rotational deformations can be respectively estimated. This study verifies the relationship between the signs of modal eccentricities and the trend of uneven distribution of modal absorbed energy on floor-plan edges of asymmetric-plan buildings. The accuracy of the proposed method was verified by analyzing one 3-storey and one 20-storey two-way asymmetric-plan buildings subjected to bi-directional ground motions. The computational efficiency of the proposed method is confirmed by comparing the computation time with that required by using the nonlinear response history analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.