Abstract

We have compared direct measurements of the rate of dissipation of turbulent kinetic energy, e, to estimates using Batchelor fitting techniques in controlled laboratory experiments. Turbulence was generated uniformly throughout a linearly salt stratified fluid by the continual horizontal oscillation of a rigid vertical grid. Batchelor estimates of e were obtained by processing data acquired from traversing fast response thermistors through the fluid in three orthogonal directions. It was found that the Batchelor estimates from the two probes traversing in the plane of the grid were similar to each other, and systematically larger than those from probes traversed perpendicular to the grid plane. We show that this is related to the spatial inhomogeneity of the high wavenumber content of the temperature gradient field generated by the grid. Hence, our experiments demonstrate that care needs to be taken when using these techniques to estimate e in grid-generated turbulence with zero mean flow. Turbulent lengthscales were also measured from the same traverse data, and it was found that the estimates of this quantity from all three traverse directions were similar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.