Abstract

Japanese cedar (Cryptomeria japonica) is the main timber species in Japan. The prediction of the temporal changes in the 137Cs concentration in the stemwood of Japanese cedar after the Fukushima nuclear accident is essential for optimizing forest management in contaminated areas. However, it is difficult to estimate the respective contributions of root and foliar uptake to 137Cs accumulation in stemwood from simple field measurements, especially in trees that contain the residue of initially-deposited 137Cs. In this study, we devised a method for estimating the rate of 137Cs root uptake into stemwood using the 133Cs content in stemwood and the 137Cs/133Cs ratio in the exchangeable fraction of soil. As a trial, the method was applied to a cedar stand in Fukushima Prefecture, using available monitoring data from prior studies over 5 years from August 2011 to August 2016. The mean annual rate of 137Cs root uptake into stemwood over this period was estimated as 53 ± 20 Bq m−2 yr−1. We note that our method likely provided a maximum estimate, because it is based on the assumptions that 133Cs in wood is exclusively supplied by root uptake, and that Cs isotopes are taken up by roots in the top 5 cm of mineral soil. Moreover, the mean annual increase of the 137Cs inventory in stemwood during the study period was measured as 108 Bq m−2 yr−1, although this value was associated with considerable uncertainty (95% confidence interval from −109 to 324 Bq m−2 yr−1). As a result, the maximum estimated rate of 137Cs root uptake into stemwood accounted for around half of the measured rate of 137Cs accumulation in stemwood. Our results show that the Cs isotopic approach has potential to distinguish the main pathway of stemwood contamination (i.e., root vs. foliar uptake) following radioactive fallout.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.