Abstract

The motion equations of matter in a gravitational field, acceleration field, pressure field, and other fields are considered based on the field theory. This enables us to derive simple formulas in the framework of the gravitational equilibrium model, which allow us to estimate the physical parameters of cosmic bodies. The acceleration field coefficient, η, and the pressure field coefficient, σ, are a function of the state of matter, and their sum is close in magnitude to the gravitational constant, G. In the presented model the dependence is found of the internal temperature and pressure on the current radius. The central temperatures and pressures are calculated for the Earth and the Sun, for a typical neutron star and a white dwarf. The heat flux and the thermal conductivity coefficient of these objects’ matter are found, and the formula for estimating the entropy is provided. All the quantities are compared with the calculation results in different models of cosmic bodies. The discovered good agreement with these data proves the effectiveness and universality of the proposed model for estimating the parameters of planets and stars and for more precise calculation of physical quantities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.