Abstract

A closed-form mathematical analysis is presented for the hydrodynamic lubrication of a 360° short porous metal journal bearing with arbitrary wall thickness which is press fitted in a solid housing and works with a turbulent film of newtonian lubricant. A new pressure equation is used. The bearing is assumed to be narrow, and therefore circumferential flow of the lubricant in the clearance region is negligible in comparison with that in the axial direction which makes the governing differential equation simpler to solve. However, this simplification is not applicable to darcian flow in the porous matrix so that a three-dimensional Laplace equation is required to describe the continuity of flow in the pores. The film curvature is included by retaining terms containing C R 1 in the expression for film thickness. The curvature of the permeable bearing matrix, which allows it to have an arbitrary wall thickness, is taken into account by a direct approach. Infinite Fourier series and their orthogonal properties are utilized for the determination of the turbulent hydrodynamic pressure distribution from which the load-carrying capacity and attitude angle are calculated. All the results of interest are simple and fully analytical in nature permitting easy and economical calculation of numerical data over a very wide range of parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call