Abstract

Proximal humerus fracture is a common injury and is usually treated using an internal fixation. However, clinical studies have reported that such treatments are associated with problems such as varus deformity and screw penetration. Therefore, to solve these problems, a surgical method using fibular allografts (FAs) is recently reported. Thus, this study is aimed to confirm the effective insertion angle ([Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]) of the FA. We applied axial and shear loads to finite element models used in our study. Finite element simulations using these models were repeated five times for each fibular insertion angle. We evaluated the construct stiffness, stress distribution on the plate and fibula, and fracture micromotion. Results showed that the method using the FA caused less stress on the plate and provided higher structural stability than the method without using the FA. In particular, the axis perpendicular condition yielded significantly greater construct stiffness and caused less von Mises stresses than the other conditions. In conclusion, the finite element analysis results showed that the FA inserted horizontally was effective in the treatment of proximal humerus fracture with an unstable medial support.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.