Abstract

Within the framework of the quantum hypothesis of synaptic transmission, the amount of a neurotransmitter released in a unitary event of calcium-dependent exocytosis corresponds to the content of a synaptic vesicle (SV). The number of these organelles in the presynaptic terminal is an important index characterizing the functional state of the given synapse. The technique of estimation of the dimension of the total SV pool, which is based on mathematical modeling and is realized in a computer experiment, is described. This technique allows one to interpret quantitative estimations obtained in the course of the analysis of images of random ultrathin sections of presynaptic terminals in the terms of 3D space. The capabilities of this technique are illustrated using an example of estimation of the size of the total SV pool in asymmetric synapses between neurons of the radial layer of the murine hippocampal CA1 area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call