Abstract
Accurate and efficient estimation of the number of sources is critical for providing the parameter of targets in problems of array signal processing and blind source separation among other such problems. When conventional estimators work in unfavorable scenarios, e.g., at low signal-to-noise ratio (SNR), with a small number of snapshots, or for sources with a different strength, it is challenging to maintain good performance. In this paper, the detection limit of the minimum description length (MDL) estimator and the signal strength required for reliable detection are first discussed. Though a comparison, we analyze the reason that performances of classical estimators deteriorate completely in unfavorable scenarios. After discussing the limiting distribution of eigenvalues of the sample covariance matrix, we proposea new approach for estimating the number of sources which is based on a sequential hypothesis test. The new estimator performs better in unfavorable scenarios and is consistent in the traditional asymptotic sense. Finally, numerical evaluations indicate that the proposed estimator performs well when compared with other traditional estimators at low SNR and in the finite sample size case, especially when weak signals are superimposed on the strong signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.