Abstract

Gossypium is an economically important, globally distributed taxon comprising more than 50 species. DNA content estimates from about half of the species indicate over a 3-fold variation exists. However, the nine DNA content estimates for G. hirsutum reveal over a 2-fold difference for this species alone. Recent reports have shown that several plant compounds can bias DNA content estimates obtained by commonly used methods. The purpose of this research was to examine the standardization procedures used for DNA content determinations with flow cytometry as applied to Gossypium, and generate revised DNA content estimates for all available Gossypium species using best-standard practices. Flow cytometry was used to measure fluorescence of isolated Gossypium nuclei stained with propidium iodide. Fluorescence values were converted to DNA content estimates based on the nuclear fluorescence of standard genotypes of barley, corn and rice. Various combinations of nuclei preparations relative to the standards were evaluated for their influence on the estimates. Both external standardization and internal standardization with Oryza sativa 'IR36' yielded statistically similar DNA content estimates for Gossypium. Internal standardization with Hordeum vulgare 'Sultan' resulted in a high estimate of DNA content. Nuclear DNA content estimates were generated for 37 Gossypium species using external standardization. Estimates of ancestral genome sizes reveal that both increases and decreases in nuclear DNA content have occurred. Variation in intraspecific and intragenomic DNA content was low, and the allopolyploid AD-genome size was nearly the additive of its progenitor genomes. Due to unknown factors, internal standardization with H. vulgare 'Sultan' may not be appropriate for DNA content determinations of Gossypium. The current DNA content estimates support accepted cytogenetic divisions of the genus. Gossypium is a genus that exhibits genome constancy both through speciation within genomic groups and allopolyploidization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.