Abstract

The breakage of drops or bubbles in isotropic turbulent dispersions has been investigated. Based on the experimental data given in the literature, some new empirical relationships are derived to evaluate the minimum stable drop sizes, the breakup frequencies, and the drop size distribution in turbulent dispersions. The solutions of the stochastic Focker‐Planck equation are used to estimate the particle size distribution. The relationships are expressed essentially in terms of the system properties. In addition, a new relationship was proposed to estimate the ranges of Reynolds, Weber, or Morton number, at which the drag coefficient is minimum. The model predictions are compared with the experimental data given in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.