Abstract

Abstract A methodology for estimating the migration potential of diesel fuel constituents from soil to ground water was developed for a large commercial property impacted by diesel fuel. The diesel fuel impacts are associated with former railyard practices that occurred prior to 1970. The site is being redeveloped for commercial use. The proposed improvements for the site include an asphalt‐paved parking lot over the location of the diesel fuel‐impacted soils. The methodology is based on the composition of weathered diesel fuel and the migration characteristics and toxicity data of the diesel fuel constituents. Based on these considerations, the two elements of the methodology are (1) an evaluation of the migration potential of diesel fuel constituents in soil using the soil synthetic rainwater leachate laboratory analysis; and (2) a health‐risk assessment of the diesel fuel ground water impacts. This approach provided sufficient site‐specific data to support a regulatory agency decision allowing development to continue without active remediation of the site soils. If the methodology had not been applied to the site, a remedial method based on a 100 mg/kg to 1000 mg/kg TPH underground storage tank (UST) program soil cleanup level would have likely been required. Considering the project's time constraints and financial requirements, remedial options such as offsite disposal or onsite thermal treatment would have been used resulting in cleanup costs likely exceeding $500, 000. The potential value of this methodology can be best appreciated considering that, based on EPA estimates, there are approximately 295, 000 contaminated UST sites and a significant portion of these sites are contaminated with diesel fuel. These sites could benefit considerably from this approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.