Abstract

Sousa et al. (2010) introduced a ratio estimator for the mean of a sensitive variable and showed that this estimator performs better than the ordinary mean estimator based on a randomized response technique (RRT). In this article, we introduce a regression estimator that performs better than the ratio estimator even for modest correlation between the primary and the auxiliary variables. The underlying assumption is that the primary variable is sensitive in nature but a non sensitive auxiliary variable exists that is positively correlated with the primary variable. Expressions for the Bias and MSE (Mean Square Error) are derived based on the first order of approximation. It is shown that the proposed regression estimator performs better than the ratio estimator and the ordinary RRT mean estimator (that does not utilize the auxiliary information). We also consider a generalized regression-cum-ratio estimator that has even smaller MSE. An extensive simulation study is presented to evaluate the performances of the proposed estimators in relation to other estimators in the study. The procedure is also applied to some financial data: purchase orders (a sensitive variable) and gross turnover (a non sensitive variable) in 2009 for a population of 5,336 companies in Portugal from a survey on Information and Communication Technologies (ICT) usage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.