Abstract

Envisioning the next generation electrified chemical reactors heated by induction that will be able to provide feedback on the material properties online, allowing early diagnosis of potential problems, authors in this paper study the magnetic behavior of supported cobalt (catalytic) nanoparticles, with both face-centered cubic (fcc) and hexagonal close pack (hcp) crystal structure, when the Earth magnetic field is applied. The investigation and corresponding simulations have been performed with finite element analysis. The magpar software has been used, allowing simulation of the hysteresis loop for each ferromagnetic sample. The influence of the next neighbor distance and the impact of the number of the particles on the hysteresis loop are studied. The magnetizations of each cobalt-based sample, along with the hysteresis loop have been calculated by simulations and validated by experiments with satisfactory agreement.. Simulations indicate that the number of the particles (different size, under the same total mass) does not affect the hysteresis loop of the material, while the next neighbor distance, has a significant influence. The objective of the present research paper is to develop a novel, versatile, low cost, in situ method for simulating and evaluating magnetic fields generated from heterogeneous catalysts targeting to real-time remote monitoring diagnostics of the catalytic process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call