Abstract

I provide conditions under which the trimmed FDQML estimator, advanced by McCloskey (2010) in the context of fully parametric short-memory models, can be used to estimate the long-memory stochastic volatility model parameters in the presence of additive low-frequency contamination in log-squared returns. The types of lowfrequency contamination covered include level shifts as well as deterministic trends. I establish consistency and asymptotic normality in the presence or absence of such lowfrequency contamination under certain conditions on the growth rate of the trimming parameter. I also provide theoretical guidance on the choice of trimming parameter by heuristically obtaining its asymptotic MSE-optimal rate under certain types of lowfrequency contamination. A simulation study examines the finite sample properties of the robust estimator, showing substantial gains from its use in the presence of level shifts. The finite sample analysis also explores how different levels of trimming affect the parameter estimates in the presence and absence of low-frequency contamination and long-memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.