Abstract

Capacitive, inductive and resistive loads of an ion-trap system, which can be modelled as LCR circuits, are important to know for building a high accuracy experiment. Accurate estimation of these loads is necessary for delivering the desired radio frequency (RF) signal to an ion trap via an RF resonator. Of particular relevance to the trapped ion optical atomic clock, determination of these loads lead to accurate evaluation of the Black-Body Radiation (BBR) shift resulting from the inaccurate machining of the ion-trap itself. We have identified different sources of these loads and estimated their values using analytical and finite element analysis methods, which are found to be well in agreement with the experimentally measured values. For our trap geometry, we obtained values of the effective inductive, capacitive and resistive loads as: 3.1 μH, 3.71 (1) μH, 3.68 (6) μH; 50.4 pF, 51.4 (7) pF, 40.7 (2) pF; and 1.373 Ω, 1.273 (3) Ω, 1.183 (9) Ω by using analytical, numerical and experimental methods, respectively. The BBR shift induced by the excess capacitive load arising due to machining inaccuracy in the RF carrying parts has been accurately estimated, which results to a fractional frequency shift of 6.6 × 10−17 for an RF of 1 kV at 2π × 15 MHz and with ±10 μm machining inaccuracy. This needs to be incorporated into the total systematic uncertainty budget of a frequency standard as it is about one order of magnitude higher than the present precision of the trapped ion optical clocks.

Highlights

  • An ion-trap system either for guiding[1,2] or for trapping[3,4] of ions requires narrow band radio frequency (RF) at the desired parameters

  • Considering the estimated load values, the design parameters of the resonator can be chosen such that it operates as desired. This analysis shows a pathway for predicting output values, e.g., resonant frequency, Q-factor of an RF resonator both in loaded and unloaded conditions prior to its construction

  • The RF phase difference at the tip of the electrodes resulting from the unignorable machining inaccuracy, has been estimated accurately

Read more

Summary

Introduction

An ion-trap system either for guiding[1,2] or for trapping[3,4] of ions requires narrow band radio frequency (RF) at the desired parameters. Towards designing of a precision ion trap that will be used for building of a Yb-ion optical clock[13,14], we have estimated electrical equivalent loads resulting from different sources and verified them experimentally. This helps us to build a desired helical resonator[15,16] and to estimate the BBR shift resulting from resistive heating of the ion-trap

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.