Abstract

By means of radiative transfer simulations we developed a model for estimating the absorption a, the scattering b, and the backscattering b(b) coefficients in the upper ocean from irradiance reflectance just beneath the sea surface, R(0-), and the average attenuation coefficient for downwelling irradiance, <K(d)>1, between the surface and the first attenuation depth. The model accounts for Raman scattering by water, and it does not require any assumption about the spectral shapes of a, b, and b(b). The best estimations are obtained for a and b(b) in the blue and green spectral regions, where errors of a few percent to <10% are expected over a broad range of chlorophyll concentration in water. The model is useful for satellite ocean color applications because the model input, R(0-) and <K(d)>1, can be retrieved from remote sensing and the model output, a and b(b), is the major determinant of remote-sensing reflectance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call