Abstract
Abstract We suggest a convenient probe exciplex system for studies in radiation spin chemistry based on a novel acceptor-substituted diphenylacetylene, 1-(phenylethynyl)-4-(trifluoromethyl)benzene that has a very short fluorescence lifetime (<200 ps) and low quantum yield (0.01) of intrinsic emission, provides efficient electron capture in alkanes and efficient exciplex formation upon recombination in pair with DMA radical cation, while exhibiting a shifted to red exciplex emission band as compared to the parent system DMA – diphenylacetylene. After chemical, luminescent, radiation and spin-chemical characterization of the new system we used the magnitude of magnetic field effect in its exciplex emission band for experimental estimation of the fraction of spin-correlated radical ion pairs under X-irradiation with upper energy cutoff 40 keV in a set of 11 alkanes. For linear and branched alkanes magnetic field effects and the corresponding fractions are approximately 19–20% and 0.28, while for cyclic alkanes they are lower at 16–17% and 0.22, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.