Abstract

The risk to humans from chemicals in consumer products is a function of both hazard and exposure. There is an ongoing effort to quantify chemical exposure due to household articles such as furniture and building materials. Polymers and plastic materials make up a substantial portion of these articles, which may contain chemical additives such as plasticizers. When these additives are not bound to the polymer matrix, they are free to diffuse throughout it and leach or emit from the surface. We have implemented a methodology to predict plasticizer emission from polyvinyl chloride (PVC) products, based on group contribution methods that consider a free volume effect to estimate activity coefficients for chemicals in polymer-solvent solutions. Using the estimated activity coefficients, we calculate steady-state gas phase concentrations for plasticizers in equilibrium with the polymer surface (y0). The method uses only the structure of the chemical and polymer, the weight fraction, and physical-chemical properties, allowing rapid estimation of y0 at different weight fractions in PVC. Using the predicted y0 values and weight fraction data gleaned from public databases, we estimate plasticizer exposures associated with 72 PVC-containing articles using a high-throughput model. We also investigate potential exposures associated with plasticizer substitutions in these products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call