Abstract
Authors Rusinov R.V., Hoodorozhkov S.I., Dobretsov R.Yu., kgm-spb@mail.ru. Estimation of the efficiency of the thermal cycle of a piston internal combustion engine The article proposes a simplified technique for the operational assessment of the efficiency of the heat cycle of a piston internal combustion engine. A feature of the developed computational model is the release of the amount of heat consumed for the production of only mechanical energy in the form of a separate component of the heat balance of the cycle. The value of this component is determined by calculation (or according to the results of experiments) in advance, which makes it possible to reduce the number of pre(determined initial data. The methodology is based on a mathematical description of thermodynamic processes occurring during the development of the thermal cycle of an engine with ignition of the working mixture from compression (diesel engine), which allows it to be expanded to new engines of design, including those operating under electronic control. The objects for the application of the calculation method can be diesel engines installed on transport vehicles, both individually and as part of a hybrid power plant, as well as engines of stationary or transportable power plants. The very principle underlying the model can be implemented for engines of other purposes and other thermal cycles. Keywords: heat cycle; the working process; diesel; heat content of the working fluid; expansion
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: AutoGas Filling Complex + Alternative fuel
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.