Abstract

Abstract Previous work has shown that the El Niño sea level signal leaks through the gappy western equatorial Pacific to the coasts of western and southern Australia. South of about 22°S, in the region of the Leeuwin Current, the amplitude of this El Niño signal falls. Using coastal sea level measurements and along-track altimetry data from the Ocean Topography Experiment (TOPEX)/Poseidon, Jason-1, and OSTM/Jason-2 satellites, this study finds that the interannual divergence of the eddy momentum flux D′ is correlated with the southward along-shelf sea level amplitude decay, consistent with the eddies removing energy from the large-scale sea level signal. The quantity D′ is also correlated with the interannual flow with a surprisingly short dissipation time scale of only 2 days, much shorter than the interannual time scale. A similar analysis off the western coast of South America, site of the originally named “El Niño” current, was carried out. Interannual sea level decay along the shelf edge is observed, and the interannual southward flow along the shelf edge is found to be highly positively correlated with the along-shelf sea level decay with a dissipation time scale of a few days. Dynamics similar to the Australian case likely apply.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.