Abstract

For systems analogous to a linear harmonic oscillator, the simplest way to characterize the state is by a covariance matrix containing the symmetrically-ordered moments of operators analogous to position and momentum. We show that using Stokes-like detectors without direct access to either position or momentum, the estimation of the covariance matrix of a macroscopic signal is still possible using interference with a classical noisy and low-intensity reference. Such a detection technique will allow to estimate macroscopic quantum states of electromagnetic radiation without a coherent high-intensity local oscillator. It can be directly applied to estimate the covariance matrix of macroscopically bright squeezed states of light.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.