Abstract

Estimation of the final debris distribution at the Fukushima Daiichi Nuclear Power Station (1F) is inevitable for a safe and effective decommissioning. It is necessary to clarify possible failure modes of the reactor pressure vessel (RPV), which is influenced by the thermal status of slumped debris that highly depends on the in-vessel accident progression. In this study, the accident analysis of 1F Unit 2 (1F2) was conducted using the RELAP/SCDAPSIM code, in order to understand better the in-vessel accident progression. One of the unsolved issues of 1F2 is the mechanism of three pressure peaks measured through late Mar. 14 to early Mar. 15, 2011. Despite various analyses, its mechanism is not clearly understood. Comparing the results of previous boiling water reactor (BWR) core degradation experiments and that of 1F2 numerical analysis, it can be estimated that most relocated metallic materials had solidified at the core bottom at the onset of first pressure peak. It is likely that the pressure increase occurred due to the evaporation of injected water reaching the heated core plate structures. Between the first and second pressure peaks, the water is assumed to have been injected continuously and the water level was likely to have recovered to BAF at the initiation of the second pressure peak. Probable slumping of a certain amount of molten materials initiated the second pressure peak and the subsequent gradual pressure increase continued possibly due to massive reaction between coolant and remaining Zircaloy in the core. Assuming the closure of the safety relief valve (SRV) at 0:00 on Mar. 15, the third pressure peak was well reproduced in the analysis. Although the total amount of the slumped material was evaluated, large deviation exists among the cases and uncertainty is still large.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.