Abstract
AbstractThe paper presents the results of a numerical assessment of the contribution of the ionospheric D region to the total electron content during six powerful X‐ray flares that occurred in September 2017. The calculation of the electron concentration in the lower ionosphere was carried out using a plasma‐chemical model of the ionospheric D region. This model was verified using the data of ground‐based radiophysical measurements in the VLF (very low frequency) range and data of the incoherent scattering radar. To calculate the ionization rate at the D region heights, we used real data on the radiation flux measured by the GOES and SDO satellites during the considered flares. The total electron content was estimated using GNSS data. As a result of the analysis, it was found that the contribution of the lower ionosphere to the TEC change varied from 7% to 23% for flares with different spectra. A functional dependency has been obtained that can be used to estimate the contribution of the D region to the TEC increment depending on the spectrum of the flare.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.