Abstract

The void index is a relative quantity measuring the position of the current void ratio of a clay against the void ratios of the clay at two specific vertical effective stresses (i.e., σv′=100kPa and σv′=1000kPa). Based on this concept, a simple systematic tool is proposed for estimating the compression behaviour of reconstituted clays over a wide range of stresses and water contents. Following the practice of geotechnical engineering computation, the compression behaviour of clays is idealised as linear segments in the Iv~lnp′ (or the void index and the mean effective stress) space. Considering the variation in the available data, there are three related but independent models for describing the compression behaviour of reconstituted clays. The accuracy of estimation increases with the level of available data. The proposed estimation is used to simulate the behaviour of a variety of reconstituted clays over a wide range of stresses and water contents. With different levels of available data, the estimation is evaluated on the basis of these simulations. The proposed estimation can take maximum use of available data and provide a simple yet practical tool for calculating the compression behaviour of reconstituted clays and a basic parameter for geotechnical engineering computations, the compression index. An empirical equation for the initial compression index is also suggested and verified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call