Abstract

In this study, five different artificial intelligence methods, including Artificial Neural Networks based on Particle Swarm Optimization (PSO-ANN), Support Vector Regression (SVR), Multi- Layer Artificial Neural Networks (MLP), Radial Basis Neural Networks (RBNN) and Adaptive Network Based Fuzzy Inference System (ANFIS), were used to estimate monthly water level change in Lake Beysehir. By using different input combinations consisting of monthly Inflow - Lost flow (I), Precipitation (P), Evaporation (E) and Outflow (O), efforts were made to estimate the change in water level (L). Performance of models established was evaluated using root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2). According to the results of models, e-SVR model was obtained as the most successful model to estimate monthly water level of Lake Beysehir.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.