Abstract

BackgroundThe human placenta extrudes a variety of extracellular vesicles (EVs) into the maternal blood daily. These vesicles may be crucial to the adaptation of the maternal cardiovascular and immune systems to pregnancy. Quantifying the EVs that are released in early gestation is important to our understanding of how placental EVs may contribute to the regulation of maternal physiology. MethodsEVs were isolated from first trimester placental explants and separated into micro- and nano-vesicles by differential centrifugation. The numbers of each type of EVs extruded from each milligram of placentae between gestational weeks 8 and 12 was determined by Nanoparticle Tracking Analysis. The total protein or DNA content of the vesicles was determined by BCA assay or Qubit® 2.0. ResultsNeither the number of micro- nor nano-EVs/mg explant (n = 49), nor the total protein (n = 19) and DNA content (n = 29) of these EVs changed significantly between 8 and 12 weeks of gestation. When the increasing placental weight with gestation was accounted for, the daily number of placental EVs extruded into the maternal blood increased by more than 100 fold between 8 and 12 weeks (micro-EVs 6.23 X 1014 and nano-EVs 1.84 X 1014 at 12 weeks, p = 0.0003). DiscussionConstant production of micro- and nano-EVs per-milligram placenta, regardless of gestational age, and the increased daily burden of EVs across gestational age indicate these EVs have the potential to regulate maternal physiology from early pregnancy. Since total EV protein content, like EV numbers was, constant, this is a potentially reliable surrogate for quantifying EVs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call