Abstract

BackgroundThe Cerrado is the second largest biome in Brazil and the most biodiverse tropical savannah in the world and acts as a great sequester of atmospheric carbon. The lack of studies related to the quantification of its total biomass compromises the understanding of the dynamics of CO2 in this biome. Thus, it is relevant to develop studies aiming at obtaining accurate estimates of the carbon stock in the different phytophysiognomies that make the Cerrado, to include them in appropriate forest management models. Based on the hypothesis that the amount of carbon stored can vary according to the vegetation typology and vegetation compartments, the aerial stock of dry biomass and carbon were estimated in different compartments (arboreal, herbaceous-shrub and litter). The study was developed in open Brazilian savannah and soils on the sandstone and discussed the effect of fire on this phytophysiognomy. For the arboreal compartment were adjusted mathematical models to fit the biomass equations to estimate the individual stock of the trees in this compartment. The results of the stocks were discussed considering the effect of fire on the phytophysiognomy.ResultsBased on the precision and extra distribution measures, the Schumacher-Hall (non-logarithmic) equation presented better results to estimate the individual biomass and carbon stocks of the open Brazilian savannah trees. The aboveground biomass was 12.88 Mg ha−1, corresponding to a total carbon stock of 5.91 Mg ha−1, where most of the stocks are in the herbaceous-shrub compartment (44%). The arboreal compartment accounts for the smallest part of the stocks, followed by the litter.ConclusionsThe observed values are in the interval verified for other areas of savannah studied in Brazil. The values verified for the open Brazilian savannah in sandy soils are at the lower limit of this range, due to the nutrient-poor nature of this type of soil. The distribution of stocks in the different compartments above the ground points to the fragility of this environment to the random fire effect, common in the region. That shows the need for conservation measures for vegetation maintenance and soil protection to preserve adequate nutrient cycling in the ecosystem.

Highlights

  • The Cerrado is the second largest biome in Brazil and the most biodiverse tropical savannah in the world and acts as a great sequester of atmospheric carbon

  • Adjustment of models to estimate dry biomass and carbon stocks of individual trees The sample for quantification of the biomass contained in the arboreal compartment of the studied physiognomy, open Brazilian savannah (OBS), counted with 60 trees, distributed in five diametric classes (Table 1) and among eight different species: Kielmeyera coriacea (17), Pouteria ramiflora (15), Kielmeyera petiolaris (8), Hancornia speciosa (7), Pouteria torta (5), Eugenia dysenterica (2), Vochysia tucanorum (3), Palicourea rigida (3)

  • The Sxy% varied from 30.50 to 72.89%, demonstrating that the pattern of high heterogeneity of Cerrado samples [10, 31, 38], which is confirmed by the dendrometric characteristics and the stocks per plant compartment of the trees sampled in the OBS to adjust of the models (Table 3)

Read more

Summary

Introduction

The Cerrado is the second largest biome in Brazil and the most biodiverse tropical savannah in the world and acts as a great sequester of atmospheric carbon. In Brazil, the conversion of forested areas to other forms of land use accounts for about 77% of carbon dioxide emissions in the atmosphere [4]. In the case of the Cerrado biome, the change in land use intensified in the 1970s due to the expansion of the agricultural frontier in this biome, which presents favorable relief and soil conditions for mechanization processes of agricultural production, besides low land prices [3, 13]. Still, according to these authors, the deforestation occurred in an unsustainable way for the production of coal. The degradation of this biome occurred more intensely in the western region of Bahia state, especially in the São Francisco River basin, being this the region that more evolves on the conversion of vegetated areas in the biome [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call