Abstract
The present work aims to build mathematical models based on experimental data to estimate the mechanical properties of submerged arc weldment. AISI 1020 low carbon steel plates 16mm thickness were welded according to orthogonal array in order to establish the relationship between input parameters (welding current, Arc voltage and welding speed) and output parameters (ultimate tensile stress, yield stress, impact energy and hardness) by submerged arc welding (SAW) process. The relationship between input and output parameters for the welding process are conducted using two suitable mathematical models the first one based on regression analysis, while the second one based on multi input single output ANFIS model for estimation of some mechanical properties of the welded plates. It was found that ANFIS results are closer to the experimental results than regression results. The optimal parameters (which give a maximum value of ultimate tensile strength (UTS), yield stress and impact energy; 446 MPa, 318 MPa and 213 J) are welding current is (380 Amp), Arc voltage is (25 V) and welding speed is (40 cm/min), while the maximum value of hardness number is (228 HV), when current welding is (380 Amp), Arc voltage is (25 V) and welding speed is (25 cm/min).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.