Abstract

Mechanistic pavement design procedures based on elastic layer theory require the specification of elastic moduli for each material in the pavement section. Repeated load tests yielding a resilient modulus are frequently used to characterize the soil subgrade. Due to difficulties associated with cyclic testing, approximate methods are often used for design estimates of resilient modulus. These approximations are often based only on shear strength measures and do not account for the dependence on the magnitude of cyclic deviator stress. A procedure is described to relate the soil‐index properties and the moduli obtained from uncon‐fined compression tests, to resilient modulus. Two statistical models are described and demonstrated for 11 soils from throughout the state of Tennessee. One model provides an estimation of the breakpoint resilient modulus, or the modulus at a deviator stress of 6 psi (41 kPa). The second model provides a general nonlinear relationship for the modulus of fine‐grained soils as a function of deviator stress. Both models are demonstrated for a range of soils and are shown to provide a good characterization of the response for the soils investigated. Similar relationships can be developed for other subgrade soils, and may prove useful to agencies that use deterministic pavement design procedures, but lack the capability for high‐production repeated‐load testing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.