Abstract

ABSTRACTIn long-memory data sets such as the realized volatilities of financial assets, a sequential test is developed for the detection of structural mean breaks. The long memory, if any, is adjusted by fitting an HAR (heterogeneous autoregressive) model to the data sets and taking the residuals. Our test consists of applying the sequential test of Bai and Perron [Estimating and testing linear models with multiple structural changes. Econometrica. 1998;66:47–78] to the residuals. The large-sample validity of the proposed test is investigated in terms of the consistency of the estimated number of breaks and the asymptotic null distribution of the proposed test. A finite-sample Monte-Carlo experiment reveals that the proposed test tends to produce an unbiased break time estimate, while the usual sequential test of Bai and Perron tends to produce biased break times in the case of long memory. The experiment also reveals that the proposed test has a more stable size than the Bai and Perron test. The proposed test is applied to two realized volatility data sets of the S&P index and the Korea won-US dollar exchange rate for the past 7 years and finds 2 or 3 breaks, while the Bai and Perron test finds 8 or more breaks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.