Abstract

AbstractIn this work, to estimate the compressive, splitting tensile, and flexural strength of self‐compacting concrete (SCC) having single fiber and binary, ternary, and quaternary fiber hybridization, the deep‐learning (DL) and support vector regression (SVR) models were devised. The fiber content and coarse aggregate/total aggregate ratio (CA/TA) were the variables for 24 designed mixtures. Four different fibers, which were a macro steel fiber, two types of micro steel fibers with different aspect ratio, and polyvinyl alcohol (PVA) fiber, were used in SCC mixtures. The specimens of each mixture were tested to measure the engineering properties for 7, 28, and 90 days. The amount of cement, fly ash, fine aggregate, CA, high‐range water‐reducing admixture, water, macro steel fiber, PVA fiber, two types of micro steel fibers, and curing time were selected as input layers while the output layers were strength results. The experimental results were compared with the estimation results. The engineering properties were estimated using the SVR model with 95.25%, 87.81%, and 93.89% accuracy, respectively. Furthermore, the DL model estimated compressive strength, tensile strength, and flexural strength with 99.27%, 98.59%, and 99.15% accuracy, respectively. It was found that the DL estimated the engineering properties of hybrid fiber–reinforced SCC with higher accuracy than SVR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.