Abstract

In this paper the solution was proposed for the state variables estimation problem in the mathematical model of the DC switch-mode power converter built according to the Ćuk scheme. Pulse converters are one of the main components of most modern electrical devices and the circuit proposed by Slobodan Ćuk in the 70s of the 20th century is still relevant and demanded. Traditionally, PI (proportional-integral) controllers or proportional-integral adaptive control algorithm (PI-PBC), based on passification methods and superior to standard PI controllers in accuracy, are used as the control algorithm for power converters. However, you need to know the entire vector of the state variables of the converter to build a PI-PBC controller, and moreover, all its parameters must be accurately known. Unfortunately, in practice, such assumptions are not fulfilled, since parametric drifting is possible, and measurements of the converter’s state require additional sensors, which in some cases does not justify itself. Thus, there is a need to develop additional observers or estimators that allow obtaining data on all variables of the converter, as well as its parameters. The solution is based on the GPEBO method (generalized parameter estimation-based observers). The problem was solved under assumption that only the output signal (the output voltage of the converter) is measurable and some of the mathematical model parameters are unknown. An important aspect of the observer design is the development of an algorithm for unknown parameters and the state vector of a mathematical model estimation that ensures convergence in a finite time. Finite-time convergence is extremely important when designing observers since transients in pulse converters occur very quickly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call