Abstract

This paper presents the results obtained from a series of experiments on double-curvature forming of 300 mm square and 15 mm thick plates of type 316L(N) stainless steel to evaluate the inherent springback and also to validate finite element method (FEM) based process model developed for forming of multiple-curvature sectors of large size vessels. The experimental results show that twisting of the plate occurs during pressing, which is unavoidable in an actual forming setup on the shop floor. Twisting increases with increase in slope of the die cavity. Springback in the plate changes in an ascending order towards the centerline of the plate from the edges. The final radius of curvature (ROC) on the pressed plate after springback does not remain constant along a particular axis although the die and the punch had constant ROC along that axis because of varying constraint to opening up of the plate from centerlines to the edges. Springback also increases with reduction in the stiffness of the die and punch. The simulated plate profiles obtained from the FEM process model for multiple-curvature plate forming compared well with the experiments, the maximum error being within 6%. The process model used a sequential dynamic explicit formulation for the plate pressing phase and a static implicit formulation for the unloading (springback) phase in the Lagrangian framework. Reduced integration shell elements were used for the plate and the die and the punch were considered rigid. Dynamic explicit FEM for pressing and static implicit FEM for the unloading phase are adequate and economic for modeling of plate forming process by using FEM. The necessary material and frictional property data needed for the FEM process model were generated in-house. This model can be applied to design of dies and punches for forming the petals of large pressure vessels. The FEM process model predicts the final shape of the product and the residual cold work level for a given die, punch and plate configuration and this information can be used to correct the die and punch shapes for springback to manufacture the petals to the desired accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call