Abstract

Due to their interesting size-dependent magnetic characteristics and relative biocompatibility, magnetic superparamagnetic iron oxide (SPIO) nanoparticles have been widely exploited as probes for cell and subcellular structure identification, as well as medication and gene delivery. A thorough understanding of the mechanics of the interaction between nanoparticles and macrophages is vital in managing dynamic processes in nanomedicine. In this study, the interaction behavior and uptake of SPIO nanoparticles by M1- and M2-type macrophages were investigated. Mice monocytes were differentiated into M1 and M2 macrophages, and the uptake of SPIO nanoparticles was studied using a TEM microscope. A high resolution image of 1 nm resolution, an image processing technique, was developed to extract the SPIO-NPs from tomographic TEM microscopic images. Lysosomes appear to be the zones of high concentrations of SPIO inside macrophages. Lysosomes were first selected in each image, and then segmentation by the Otsu thresholding method was used to extract the SPIO-NPs. The Otsu threshold method is a global thresholding technique used to automatically differentiate SPIOs from the background. The SPIO-NPs appear in red colors, and the other pixels in the image are considered background. Then, an estimation of the SPIO-NP uptakes by lysosomes is produced. Higher uptake of all-sized nanoparticles was observed in M1- and M2-type macrophages. An accurate estimation of the number of SPIO-NPs was obtained. This result will help in controlling targeted drug delivery and assessing the safety impact of the use of SPIO-NPs in nanomedicine for humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.