Abstract

It is well known that people spend 80-90% of their life time indoors. At the same time, pollution levels of indoors can be much higher than outdoor levels. Not surprisingly, the term ‘sick building syndrome’ (SBS) has been used to describe situations where occupants experience acute health and comfort effects that are related to poor air in buildings (Clements-Croome, 2000). It is an increasingly common health problem which has been acknowledged as a recognizable disease by the World Health Organization (Redlich et al., 1997, Akimenko et al., 1986). Since its recognition in 1986, many efforts have been put to try to identify the causes to eliminate SBS. The causes may involve various factors. Mainly, it is thought to be a direct outcome of poor indoor air quality (IAQ) (Clements-Croome, 2004). In most cases ventilation system is found to be at the heart of the problem as well as high carbon dioxide (CO2) levels (Redlich et al., 1997). Since 70’s energy crisis, buildings have been tried to build with tight envelopes and highly rely on mechanical ventilation so as to reduce energy cost. Due to tight envelopes, a big portion of energy contributes to ventilation. In most cases SBS occurs in mechanically-ventilated and commercial buildings, although it may occur in other buildings such as apartment buildings. It has been estimated that up to 30% of refurbished buildings and a significant number of new buildings suffer from SBS (Sykes, 1988). However, the solutions to SBS are difficult to implement by the complexity of ventilation system and the competing needs of energy saving. Hence the issue about ventilation efficiency is getting more and more people’s attention. It is useful to evaluate ventilation in order to assess IAQ and energy cost. A number of techniques are available to perform such evaluations. Among them, the measurement and analysis of CO2 concentrations to evaluate specific aspects of IAQ and ventilation is most emphasized. CO2 is a common air constituent but it may cause some heath problems when its concentration level is very high. Normally CO2 is not considered as a causal factor in human health responses. However, in recent literalities, it has been reported that there is a statistically significant association of mucous membrane (dry eyes, sore throat, nose congestion, sneezing) and lower respiratory related symptoms (tight chest, short breath, cough and wheeze) with increasing CO2 levels above outdoor levels (Erdmann & Apte,

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.